a2 United States Patent
Chan et al.

US009462022B2

10) Patent No.: US 9,462,022 B2
45) Date of Patent: *Oct. 4, 2016

(54) MOBILE APPLICATION MIGRATION TO
CLOUD COMPUTING PLATFORM

(71) Applicant: NEXTBIT SYSTEMS INC., San
Francisco, CA (US)

(72) Inventors: Michael A. Chan, San Francisco, CA
(US); Tom Moss, Los Altos, CA (US);
Daniel R. Bornstein, San Francisco,
CA (US); Michael K. Fleming, San
Francisco, CA (US); Justin Quan, San
Francisco, CA (US); Linda Tong, San
Francisco, CA (US)

*) Notice: Subject to any disclaimer, the term of this
] y
patent is extended or adjusted under 35
U.S.C. 154(b) by 479 days.

This patent is subject to a terminal dis-
claimer.

(21) Appl. No.: 14/043,126
(22) Filed: Oct. 1, 2013

(65) Prior Publication Data
US 2014/0101237 Al Apr. 10, 2014
Related U.S. Application Data
(60) Provisional application No. 61/708,794, filed on Oct.

2, 2012.
(51) Imt.CL
GO6F 15/16 (2006.01)
HO4L 29/06 (2006.01)
(Continued)
(52) US. CL
CPCccoeonueue HO4L 65/60 (2013.01); GO6F 8/62

(2013.01); GOGF 8/63 (2013.01); GOGF
9/4406 (2013.01); GOGF 9/4416 (2013.01):
GOGF 17/3007 (2013.01); GOGF 17/3015
(2013.01); GOGF 17/30085 (2013.01); GO6F
17/30091 (2013.01);

(Continued)

(58) Field of Classification Search
CPC ..ccovvveriivna GO6F 17/30011; HO4L 65/60
USPC e 70/203; 709/201
See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS

7,016,909 B2 3/2006 Chan et al.
8,495,611 B2 7/2013 Mccarthy et al.

(Continued)

OTHER PUBLICATIONS

Anstett, T., et al., “Towards BPEL in the Cloud: Exploiting Different
Delivery Models for the Execution of Business Processes,” IEEE
World Conference on Services 1, pp. 670-677 (Jul. 6-10, 2009).

(Continued)

Primary Examiner — Suraj Joshi
Assistant Examiner — Joel Mesa

(57) ABSTRACT

Technology is disclosed herein for migrating at least por-
tions of computer applications to a server. According to at
least one embodiment, a computing device identifies a
service component of a computer application executed at the
computing device. The service component does not directly
interact with a user of the computing device. The computing
device transfers an instance of the service component to a
server so that the service component can be executed at the
server. The computing device then receives from the server
a result message generated by the instance of the service
component executed at the server. The computing device
feeds the result message to a user interface component of the
computer application via a procedure call such that the user
interface component retrieves the result message as if it were
generated by an instance of the service component executed
at the computing device.

23 Claims, 9 Drawing Sheets

310

Cloud server
112

Storage node
14

Processor |

Storage devices

D—HSG-MGQHS

2

Storage nacs
114

Processor

Storage devices

Qﬂsﬂﬂs 1«115

130

Computlng device 134
Computer applications

32

Operating system

Migration module

34
Local storage device

@

6

e)

120

140

Computing device 144
Computer appiications
42

| Operating system

Migration module

148

Locai storage device

45|

US 9,462,022 B2
Page 2

(51) Int. CL
GOGF 17/30 (2006.01)
HO4L 29/08 (2006.01)
HO4L 12/26 (2006.01)
HO4L 9/08 (2006.01)
HO4L 9/32 (2006.01)
GOGF 9/44 (2006.01)
GOGF 9/445 (2006.01)
HO4W 8/24 (2009.01)

(52) US.CL

CPC ... GOGF 17/30194 (2013.01); HO4L 9/0825
(2013.01); HO4L 9/3226 (2013.01); HO4L

43/04 (2013.01); HO4L 65/4069 (2013.01):

HO4L 67/10 (2013.01); HO4L 67/1095

(2013.01); HO4L 67/1097 (2013.01); HO4L
67/2823 (2013.01); HO4L 67/2842 (2013.01);
HO4L 67/40 (2013.01); HO4L 67/42 (2013.01);
HO4W 8/24 (2013.01); GO6F 17/30011

(2013.01); GO6F 17/30286 (2013.01); Y02B

60/188 (2013.01)

(56) References Cited
U.S. PATENT DOCUMENTS

8,504,400 B2 8/2013 Purcell et al.
8,549,106 B2 10/2013 Howell et al.
8,555,187 B2 10/2013 Margolin
8,572,602 Bl 10/2013 Colton et al.
8,583,920 B1 11/2013 Bursell
8,594,845 B1 11/2013 Gharpure

2002/0059425 Al
2009/0300169 Al
2010/0131592 Al
2011/0004574 Al
2011/0072090 Al
2011/0167469 Al
2012/0030672 Al*

5/2002 Belfiore et al.

12/2009 Sagar et al.

5/2010 Zhang et al.

1/2011 Jeong et al.

3/2011 DeLuca et al.

7/2011 Letca et al.

2/2012 Zygmuntowicz GOGF 8/60
718/1

2012/0066373 Al

2012/0089704 Al

2012/0089726 Al

2012/0166645 Al

2013/0091502 Al

2013/0157626 Al

2013/0157699 Al

2013/0166580 Al

2013/0166712 Al

3/2012 Ochoa et al.

4/2012 Trahan et al.
4/2012 Doddavula

6/2012 Boldyrev et al.
4/2013 Kang et al.

6/2013 Talwar et al.
6/2013 Talwar et al.
6/2013 Mabharajh et al.
6/2013 Chandramouli et al.

2013/0191518 Al
2014/0006973 Al
2014/0018033 Al
2014/0052825 Al
2014/0189090 Al
2014/0245261 Al
2014/0351443 Al

7/2013 Narayanan et al.

1/2014 Cattermole et al.

1/2014 Luna

2/2014 Luecke et al.

7/2014 Mikkilineni

8/2014 Eksten et al.
11/2014 Tang et al.

OTHER PUBLICATIONS

Curbera, F., et al., “Unraveling the Web Services Web: an Intro-
duction to SOAP, ESDL, and UDDI,” IEEE Internet Computing,
vol. 6, No. 2, pp. 86-93 (Mar.-Apr. 2002).

Gannon, D., et al., “Programming the Grid: Distributed Software
Components, P2P and Grid Web Services for Scientific Applica-
tions,” Springerlink Article, Cluster Computing, vol. 5, No. 3, pp.
325-336 (Jul. 1, 2002).

Sankar, K. and Jones, A. “Cloud Data Management Interface
(CDMI) Media Types,” IETF, RFC 6208, (Apr. 2011).

Thurlow, R., “RPC: Remote Procedure Call Protocol Specification
Version 2,” RFC 5531, pp. 1-63 (May 2009).

Vaquero, LM., et al. “Dynamically Scalling Applications in the
Cloud,” ACM Sigcomm Computer Communication Review, vol.
41, No. 1, pp. 45-52 (Jan. 2011).

Non-Final Office Action mailed Aug. 4, 2014, for U.S. Appl. No.
14/267,278 by Chan, M.A. et al., filed May 1, 2014.

Notice of Allowance mailed on Jan. 12, 2015, U.S. Appl. No.
14/267,278 by Chan, M.A. et al., filed May 1, 2014.

Non-Final Rejection mailed on Dec. 19, 2014, for U.S. Appl. No.
14/157,260 by Chan, M.A. et al., filed Jan. 16, 2014.

Co-Pending U.S. Appl. No. 14/157,260 by Chan, M.A. et al., filed
Jan. 16, 2014.

Co-Pending U.S. Appl. No. 14/160,351 by Chan, M.A. et al., filed
Jan. 21, 2014.

Co-Pending U.S. Appl. No. 14/159,934 by Chan, M.A. et al., filed
Jan. 21, 2014.

International Search Report and Written Opinion mailed Jan. 2,
2014 ,7 pp., for International Application No. PCT/US2013/062995
filed Oct. 2, 2013.

Notice of Allowance mailed Mar. 25, 2014 for U.S. Appl. No.
14/160,351 by Chan, M.A. et al., filed Jan. 21, 2014.

Notice of Allowance mailed Mar. 26, 2014, for U.S. Appl. No.
14/159,934 by Chan, M.A. et al., filed Jan. 21, 2014.

Notice of Allowance mailed Apr. 16, 2014, for U.S. Appl. No.
14/159,934 by Chan, M.A. et al., filed Jan. 21, 2014.

Co-Pending U.S. Appl. No. 14/267,278 by Chan, M.A. et al., filed
May 1, 2014.

* cited by examiner

U.S. Patent Oct. 4, 2016 Sheet 1 of 9 US 9,462,022 B2

110

,...J

Cloud server

112 112

o= o

Storage node Storage node

114 114

o o~

Processor Processor

Storage davices Storage devicss

116 116
Meatwork
140
o
Computing device 1 34 Computing device ,‘_,14’1
Computer applications Computer applications
)37 14
Operating system Operating system
136 i I - 46
Migration module !’-’ Migration module }“
138 148&
o 7
Local storage davice Local storage device

FiG, 1

U.S. Patent Oct. 4, 2016 Sheet 2 of 9 US 9,462,022 B2

200
/N/
Computing device
/__\»/2 10
Network component
22
o 220
Batltery
2380
/m,/
Processor
240
/-../
Memory
2
Operating system et 250
N o 2280
Computsr applications Vet

FIG. 2

U.S. Patent Oct. 4, 2016 Sheet 3 of 9 US 9,462,022 B2

300

.,

Operating System

304

ot

Kemel

. 306 308

Network WO File 1/O ~
310 314

Multi-threading ™~ User Input ~
. A6 Shared memary |18

Sysiem interrupts aAccess
330
App migration module ~

FiIG. 3

U.S. Patent Oct. 4, 2016 Sheet 4 of 9 US 9,462,022 B2

400

Server

420
- J“‘ "‘W
Network

e

419
i [

Router

Jyemaé! data

412 411 413
N N

Email device Email device Email device

FiG. 4

U.S. Patent Oct. 4, 2016 Sheet 5 of 9 US 9,462,022 B2

Server

Network

’\m..../\\wf ,\\“w//h.

| Video
Ftreaming

data
B2 511 513
f__}

Video device Video device Video device

FiG. 5

U.S. Patent Oct. 4, 2016 Sheet 6 of 9 US 9,462,022 B2

800
T

Server

620
-

(/\/ Network

Processed
lphoto data
812 811 6813
'f“‘\..-v’ N
Photo device Photo device Photo device

FiG. 6

U.S. Patent Oct. 4, 2016

Sheet 7 of 9 US 9,462,022 B2

700

et 100

A compuling device identifies g service component of a compuier application executing at the
computing device

710
Determine whether
& worklead of the computing device can ba reduced if the™”

Yes Twewdng component is migrated (o g serer - No
S ©R
R
PR AL
Stop executing the service component at the computing device
& e 120
Transfer fo tha server an instance of the service component
‘L, s 120
Transmit data on which the service component has been operating o the server.
»__,,_,#—i\.“ o 735
=T Dtermine whether e
e user interface component is running at a foreground h
Yes i Syl ¢ - - Na war
> ing system of the computing g 740
¥
Continue monitoring the user interface
. 745 conponent
send to the servar a message indicating that the compuling device switches the user inferfacs
componearnt of the computer application o the foreground of an operating system of the
compuiing device
TRL
J . , P 30
Raceive from the server the resull message generaled by the instance of the service
component executing at the sarver
et {55
Feed the result message o & user inlernacs component of the compuler applicalion via a
procedure call such that the user interface component retrievas the resull message as if it
was generated by an instance of the service component executed at the computing device
760
Fresant content of the resulf message o the user of computing device, by the user interface
componant via an output device of the computing device
765
Elarmine whethei gn
mization factor for the service componant of tha oo
Yes application executing at the server is less than Na 770
apredetermingd v w o~
Allow the server {o continue executing
. TT5 the service component at the server

Retrieve, from the server, dala generaled by the instance of the service componeant execuling
at the server bafore the instance of the server compaonent being stopped

¥ 780

Send to the server an instruction to stop executing the instance of the service component at
the sarver

¥ 750

Execute the service component of the computer application at the computing device

FiIG. 7

U.S. Patent Oct. 4, 2016 Sheet 8 of 9 US 9,462,022 B2

800 810

An application monitaring module of a server monitors a computer application exscuting atthe
compuling device

<.

/_,82@

The monitoring module identifies a service component of the computer application handling a

computing task which does not nesd to receive input data from or send output data from any I
QO device of the computing device

”
%

.

830

Jetermine whethar

:,f"".a’@grkload of the computing device can be

Yes duced by migrating the instance of the servige No
{&‘\\\ gomponent to the serve —
T /895

Stop executing the instance of the service

camponent al the server, and instruct the

computing device to execute the sarvice
componant at the compuling device

¥ NS4G

instruct the computing device to transfer an instance of the service component to the server
and to siop exscuting the service component at the computing device

! £
¥ NSQO
Retrieve an instance of the ssrvice component from the computing devics

3 860

Executs the instance of the service component at the server

& s BT0

Determine whethear

the computer application s running at a
foreground of an operating system of the " No
computing device

8450
~
Cache the generated data and not send the
data to the computing device at the moment

Yas

. e 80

Synchronize data generated by the instance of the service component executing at the server

with data on which a user interaction component of the computer application exscuting at the
computing device operates

FIG. &

U.S. Patent Oct. 4, 2016 Sheet 9 of 9 US 9,462,022 B2

. 500

e

910 Memory 920
Processor(s)} Code 970
830
840 950
Network Storage
Adapter Adapter
To/From TofFrom
clients Persistent
and/or other Storage
cdes

FIG. 9

US 9,462,022 B2

1
MOBILE APPLICATION MIGRATION TO
CLOUD COMPUTING PLATFORM

PRIORITY CLAIM

This application claims to the benefit of U.S. Provisional
Patent Application No. 61/708,794, entitled “CLOUD
COMPUTING INTEGRATED OPERATING SYSTEM”,
which was filed on Oct. 2, 2012, which is incorporated by
reference herein in its entirety.

FIELD OF THE INVENTION

At least one embodiment of the present invention pertains
to mobile devices, and more particularly, to mobile devices
capable of migrating service components of mobile appli-
cations to cloud computing platform.

BACKGROUND

In cloud computing, a cloud server is typically respon-
sible for providing and managing applications running at the
cloud server. The data of the applications can be stored
remotely in a cloud database. These applications are
designed only for running on top of the special operating
system of the cloud server. The cloud server and the com-
puting devices have different operating systems and running
environments. Typically applications designed for the cloud
may not be downloaded and installed by the users on their
own computing devices, because processing and storage for
the applications are maintained by the cloud server and
cloud database.

SUMMARY

Technology introduced herein provides a mechanism to
migrate at least portions of computer applications to a server.
According to at least one embodiment, a computing device
identifies a service component of a computer application
executed at the computing device. The service component
does not directly interact with a user of the computing
device. The computing device transfers an instance of the
service component to a server so that the service component
is executed at the server. The computing device then
receives from the server a result message generated by the
instance of the service component executed at the server.
The computing device feeds the result message to a user
interface component of the computer application via a
procedure call such that the user interface component
retrieves the result message as if it was generated by an
instance of the service component executed at the computing
device.

Migration of the applications to the server can free up
device resources and improve device power management,
since the server uses its resource to execute the components
of the applications and consolidates data changes (e.g.,
generated by the migrated applications). The overall perfor-
mance of the device can be improved, because the operating
system of the device has better knowledge when to synchro-
nize data than an individual application. Cloud servers
typically have faster processors, memory and storage
devices. Applications that use intensive hardware resources
(e.g., CPU or I/O intensive tasks) can benefit from increased
efficiency by running in the cloud server. Therefore, it
usually takes less time to run the application in the cloud
than running it at the computing device.

10

15

20

25

30

35

40

45

50

55

60

65

2

In accordance with the techniques introduced here, there-
fore, a computing device is provided. The computing device
includes a processor, a networking interface, an output
device and an operating system including a migration mod-
ule. The migration module include instructions which, when
executed by the processor, monitor a computer application
executed at the computing device, and identify a background
thread and a foreground thread of the computer application.
The networking interface is configured to transfer an
instance of the background thread to a server, and to receive
from the server result data generated by the instance of the
background thread executed at the server. The output device
is configured to present content of the result data via a user
interface generated by the foreground thread. The fore-
ground thread generates the user interface based on the
result data as if the result data was generated by an instance
of the background thread executed at the computing device.

In accordance with the techniques introduced here, there-
fore, a server for executing computer applications designed
for computing devices is also provided. The server includes
a processor, a networking interface and an application
monitoring module. The networking interface is configured
to communicate with at least one computing device. The
application monitoring module is configured to, when
executed by the process, monitor a computer application
executing at the computing device, and to identify a service
component of the computer application. The service com-
ponent can be, for example, handling a computing task
which does not need to receive input data from or send
output data from input/output (“I/O”) devices of the com-
puting device. Alternatively, the service component can be
handling a computing task which handles heavy network
inputs and storage 1/Os (for writing data received from the
network to the local storage). The networking interface can
retrieve from the computing device an instance of the
service component or data sufficient for the server to carry
out the same functionality of the service component. The
processor executes the instance of the service component at
the server. The networking interface then synchronizes data
generated by the instance of the service component execut-
ing at the server with data on which a user interaction
component of the computer application executing at the
computing device operates. The server can include a virtu-
alized instance of a computing device, or a runtime appli-
cation that mimics a computing device.

There are different ways of migrating applications to the
server. The ways of application migration can be optimized
for different goals. For instance, applications can be
migrated in order to optimize the power usage of the
computing device. The computing device can minimize the
CPU running time and network component running time by
letting the server execute the service component instead. The
energy cost of receiving the result data from the server can
be a fraction of the energy cost of running the service
component locally at the computing device. Alternatively,
applications can be migrated in order to optimize the net-
work bandwidth of the computing device. The service
component may need to download a large amount of the data
from the network and process the data to generate result
data. The total size of the result data to be received by the
computing device from a service component running at the
server can be a fraction of the total size of data to be received
by the computing device from the network when the service
component has been executed locally at the computing
device.

US 9,462,022 B2

3

Other aspects of the technology introduced here will be
apparent from the accompanying figures and from the
detailed description which follows.

BRIEF DESCRIPTION OF THE DRAWINGS

These and other objects, features and characteristics of the
present invention will become more apparent to those skilled
in the art from a study of the following detailed description
in conjunction with the appended claims and drawings, all of
which form a part of this specification. In the drawings:

FIG. 1 illustrates an example system for computing
devices connected to a cloud server.

FIG. 2 illustrates an example of a computing device that
can communicate with a cloud server.

FIG. 3 illustrates an example operating system of a
computing device that can be used for multiple-device
caching.

FIG. 4 illustrates an example of email devices connected
to a cloud-based server.

FIG. 5 illustrates an example of video streaming devices
connected to a cloud-based server.

FIG. 6 illustrates an example of photo devices connected
to a server.

FIG. 7 illustrates an example of a process for migrating
computer applications from a computing device to a server.

FIG. 8 illustrates an example of an alternative process for
migrating applications from computing devices to a server.

FIG. 9 is a high-level block diagram showing an example
of the architecture of a computer, which may represent any
computing device or server described herein.

DETAILED DESCRIPTION

References in this specification to “an embodiment,” “one
embodiment,” or the like, mean that the particular feature,
structure, or characteristic being described is included in at
least one embodiment of the present invention. Occurrences
of such phrases in this specification do not all necessarily
refer to the same embodiment, however.

FIG. 1 illustrates an example system for computing
devices connected to a cloud server. The system includes a
cloud server 110 configured to communicate with the com-
puting devices. In one embodiment, the cloud server 110 can
be a server cluster having computer nodes interconnected
with each other by a network. The cloud server 110 can
contain storage nodes 112. Each of the storage nodes 112
contains one or more processors 114 and storage devices
116. The storage devices can include optical disk storage,
RAM, ROM, EEPROM, flash memory, phase change
memory, magnetic cassettes, magnetic tapes, magnetic disk
storage or any other computer storage medium which can be
used to store the desired information.

The computing devices 130 and 140 can each communi-
cate with the cloud server 110 via network 120. The network
120 can be, e.g., the Internet. Although FIG. 1 illustrates two
computing devices 130 and 140, a person having ordinary
skill in the art will readily understand that the technology
disclosed herein can be applied to a single computing device
or more than two computing devices connected to the cloud
server 110.

The computing device 130 includes an operating system
132 to manage the hardware resources of the computing
device 130 and provides services for running computer
applications 134 (e.g., mobile applications running on
mobile devices). The computer applications 134 stored in
the computing device 130 require the operating system 132

10

15

20

25

30

35

40

45

50

55

60

65

4

to properly run on the device 130. The computing device 130
includes at least one local storage device 138 to store the
computer applications and user data. The computing device
130 or 140 can be a desktop computer, a laptop computer, a
tablet computer, an automobile computer, a game console, a
smart phone, a personal digital assistant, or other computing
devices capable of running computer applications, as con-
templated by a person having ordinary skill in the art.

The computer applications 134 stored in the computing
device 130 can include applications for general productivity
and information retrieval, including email, calendar, con-
tacts, and stock market and weather information. The com-
puter applications 134 can also include applications in other
categories, such as mobile games, factory automation, GPS
and location-based services, banking, order-tracking, ticket
purchases or any other categories as contemplated by a
person having ordinary skill in the art.

The operating system 132 of the computing device 130
can include a migration module 136 to manage migrations of
computer applications from the computing device 130 to
cloud server 110. Instead of executing computer applications
134 directly at the computing device 130, the migration
module 136 can identify certain portions of the computer
applications 134 suitable to be executed at the cloud server
110, e.g. the background components of the computer appli-
cations 134. The migration module 136 sends the back-
ground components to the cloud server 110 so that the cloud
sever 110 can execute the background components for the
computer device 130. For instance, the migration module
136 may identify that an application includes both a service
component for background computing and an activity com-
ponent for providing user interfaces interacting with a user.
The migration module 136 may decide to migrate the service
component to the cloud server 110 so that the computing
task of the service component is offloaded to the cloud server
110.

The computer applications 134 running at the computing
device 130 (e.g. foreground components of the computer
applications 134) need not be aware that the background
components of the computer applications 134 are executed
at the cloud server 110 separate from the computing device
130. The migration module 136 can be responsible for
retrieving the data generated by the background components
executed at the cloud server 110 back to the computing
device 130. The foreground components of the computer
applications 134 can read these data as if they are generated
by background components executed at the computing
device 130 itself.

FIG. 2 illustrates an example of a computing device that
can communicate with a cloud server, according to one
embodiment. The computing device 200 can include a
networking component 210, a battery 220, a processor 230
and a memory component 240. The memory 240 can store
instructions of an operating system 250 of the computing
device 200. The memory 240 can further store instructions
of one or more computer applications 260 designed to run at
the computing device 200.

The networking component 210 can be capable of switch-
ing between states including a high power consumption state
and a low power conservation state. The network component
210 can be, e.g. a WiFi networking adapter, a cellular phone
networking adapter, or a combination thereof. The battery
220 is configured to provide power to the networking
component and other components of the computing device
200. The computing device may further include a power

US 9,462,022 B2

5

adapter to be connected to a power source to provide power
for the computing device 200, in addition to the power
provided the battery 220.

The processor 230 is configured to run computer appli-
cations 260 and the operating system 250 of the computing
device 200. The memory 240 stores instructions of the
operating system 250 which, when executed by the proces-
sor 230, cause the operating system 250 to perform pro-
cesses for realizing certain functionalities of the computing
device 200.

For instance, the process of the operating system 250 can
receive, from a cloud server (e.g., cloud server 110 in FIG.
1), an instruction to migrate a background component of one
of the computer applications 260 to the cloud server. The
cloud server may monitor the computer applications 260
running at the computing device 200 and determine which
background component is suitable to run on the cloud server
to reduce the workload of the computing device 200. The
cloud server then requests and executes the background
component at the server and sends back a result to the
computing device 200. A foreground component of the same
computer application may read the result and present the
content of the result via an output device (e.g. a display) of
the computing device 200.

The technology benefits the computing device in many
ways. The performance of the application can be better. The
execution of the background component at the server can be
faster, since the server may have much more powerful
hardware resources than the computing device. Alterna-
tively, the efficiency of the local hardware resources of the
computing devices can be improved. Since the background
component has been migrated to the server, this frees up the
local hardware resources (e.g. CPU and memory) of the
computing devices to handle the local applications and
operating system in a more efficient way. Furthermore, the
technology may extend the battery life of the device. For
instance, the computing device 200 can stay at a low power
conservation state initially. When the server requests the
background component, the computing device 200 switches
to a high power consumption state and transmits the data for
an instance of the background component to the server. The
computing device 200 can again switch back to the low
power conservation state after sending out an instance of the
background component. When the server sends back the
result after executing the background component, the com-
puting device 200 switches to the high power consumption
state to handle the result. In this way, the battery power and
the hardware resources of computing device 200 are opti-
mized and utilized in a more efficient way. As a result, the
battery life of the computing device 200 can be extended.

Alternatively, instead of the server, the operating system
250 itself can monitor the computer applications 260 run-
ning at the computing device and determine which back-
ground component of a computer application is suitable to
be executed at the server to reduce the workload of the
computing device 200. Once the background component is
migrated to the server, the server can execute the back-
ground component and send back the result to the computing
device 200.

FIG. 3 illustrates an example operating system of a
computing device that can be used for multiple-device
caching, according to one embodiment. The operating sys-
tem 300 includes a kernel 304. The kernel 304 provides
interfaces to hardware of the electronic device for the
computer applications running on top of the kernel 304, and
supervises and controls the computer applications. The
kernel 304 isolates the computer applications from the

10

15

20

25

30

35

40

45

50

55

60

65

6

hardware. The kernel 304 may include one or more inter-
vening sources that can affect execution of a computer
application. In one embodiment, the kernel 304 includes a
network I/O module 306, a file /O module 308, multi-
threading module 310, user input 314, system interrupts 316,
and shared memory access 318.

An app migration module 330 can run on top of the kernel
304. Alternatively the kernel 304 can be modified to include
the app migration module 330. The app migration module
330 is responsible for migrating at least a portion of an
application to a server. For instance, the app migration
module 330 can monitor the application and maintain a
network connection with a storage server. The application
may include multiple threads, e.g. a background thread (e.g.,
a service component) and a foreground thread (e.g., an
activity component). When the app migration module 330
determines that the background thread does not interact
directly with a user of the computing device, the app
migration module 330 sends an instance of the background
thread to the server. The server executes the background
thread and sends back result data generated by the back-
ground thread. The app migration module 330 further feeds
the result data to the foreground component as if the result
data was generated by an instance of the background thread
executed at the computing device.

The technology disclosed herein can be applied to various
computing devices including, e.g., devices capable of
receiving emails or internet messages. For instance, FIG. 4
illustrates an example of email devices connected to a
cloud-based server. As depicted in FIG. 4, a server 400 may
provide a cloud-based service for running a background
component of an email application designed for email
devices 411-413. The server 400 retrieves an instance of the
background component over a network 420. The network
420 can be, e.g., the Internet. Examples of email devices
411, 412 and 413 may include, but are not limited to, a
mobile phone, a smartphone, a personal digital assistant
(PDA), a tablet, a mobile game console, a laptop computer,
a desktop computer, or any other devices having communi-
cation capability.

In some embodiments, server 400 may monitor or mea-
sure resource usage or workload of the devices. In some
embodiments, the resource usage may be associated with
resource usage of a central processing unit (CPU) of the
devices, resource usage of a graphic processing unit (GPU)
of the devices, resource usage of a main memory of the
devices, and/or resource usage of a graphic memory of the
devices, etc.

For example, in some embodiments, server 400 may
determine or identify, a background component of an email
application running at device 411. The background compo-
nent is responsible for inquiring and retrieving emails from
a remote email server. The email application also includes a
foreground component responsible for presenting the email
to a user of the email device 411 via an output device (e.g.
a display). The email device 411 can send an instance of the
background component to the server 400 and stop executing
the background component at the device 411. In turn, the
server 400 starts executing the background component for
inquiring and retrieving emails for device 411.

The server 400 continues to monitor the email application
running at the email device 411. For instance, when the
email device 411 runs the foreground component at a
background of an operating system of the device 411, the
server 400 can avoid sending the retrieved emails to the
device 411 by caching the received email on the server 400
itself. Once the foreground component is switched to a

US 9,462,022 B2

7

foreground of the operating system of the device 411, the
server 400 can send to the device 411 emails retrieved by the
background component of the email application executed at
the server 400.

A person having ordinary skill in the art can readily
understands that the types of device illustrated in FIG. 4 can
be different. For example, email devices 411, 412 and 413
can be, e.g., tablets, smart phones or laptop computers
respectively. The server 400 is capable of executing appli-
cations designed for these different types of devices.

Similarly, the technology disclosed herein can be applied
to devices for steaming video or other types of data steam-
ing. For instance, FIG. 5 illustrates an example of video
streaming devices connected to a cloud-based server. As
depicted in FIG. 5, a server 500 may provide a cloud-based
service for running a background component of a video
streaming application designed for video devices 511-513.
The server 500 retrieves an instance of the background
component over a network 520. Examples of video devices
511, 512 and 513 may include, but are not limited to, a
mobile phone, a smartphone, a personal digital assistant
(PDA), a tablet, a mobile game console, a laptop computer,
a desktop computer, or any other devices having communi-
cation capability.

In some embodiments, server 500 may determine or
identify, a background component of a video streaming
application running at device 511. The background compo-
nent is responsible for inquiring and retrieving video stream-
ing packets from a remote content server. The video stream-
ing application also includes a foreground component
responsible for playing the streaming video to a user of the
video device 511 via an output device (e.g. a display). The
video device 511 sends an instance of the background
component to the server 500 and stops executing the back-
ground component at the device 511. In turn, the server 500
starts executing the background component for inquiring
and retrieving video streaming packets for device 511.

The server 500 continues to monitor the application
running at the video device 511. For instance, when the
video device 511 runs the foreground component at a
foreground of an operating system of the device 511, the
server 500 can continue to forward the video streaming
packets received by the background component running at
the server 500 to the video device 511 in real time as soon
as the background component receives them. Once the
foreground component is switched to a background of the
operating system of the device 511, the server 500 can
continue to run the background component, but stop sending
the video streaming packets to the video device 511. The
video streaming packets are cached in the server 500 so that
they can be sent to video device 511 if the foreground
component is switched back to the foreground of the oper-
ating system of the device 511.

The technology disclosed herein can also be applied to
devices for processing photos or other types of data. For
instance, FIG. 6 illustrates an example of photo devices
611-613 connected to a server 600. As depicted in FIG. 6, a
server 600 may provide a cloud-based service for running a
background component of a photo processing application
designed for photo devices 611-613.

In some embodiments, server 600 may monitor or mea-
sure resource usage or workload of the photo devices. For
example, in some embodiments, server 600 may determine
or identify, a background component of a photo application
running at device 611. The video streaming application can
include a foreground component responsible for receiving
photo data from, e.g., a camera device of the device 611 and

10

15

20

25

30

35

40

45

50

55

60

65

8

playing the photo to a user of the device 611 via an output
device (e.g. a display). The background component of the
photo application is responsible for processing the photo.
The processing of the photo can include, e.g., resizing,
filtering, exposure adjusting, color adjusting, file format
changing or editing of the photo. The photo device 611 sends
an instance of the background component to the server 600
and stops executing the background component at the device
611. The photo device 611 can further send a photo to be
processed by the background component to the server 600.
In turn, the server 600 starts executing the background
component for processing the photo for device 611.

The server 600 continues to monitor the photo application
running at the photo device 511. For instance, when the
photo device 611 runs the foreground component at a
foreground of an operating system of the device 611, the
server 600 can send the processed photo data back to the
device 611 as soon as the background component finishes
processing the photo at the server 600. If the foreground
component is switched to the background of the operating
system of the device 611, the server 600 can continue to run
the background component for any incoming photo process-
ing tasks, but stop sending the processed photo data to the
photo device 611. The processed photo data are cached in the
server 600 so that they can be sent to photo device 611 if the
foreground component is switched back to the foreground of
the operating system of the device 611.

As illustrated in the figures, computing devices can com-
municate with the cloud server to migrate and offload some
portions of the computer applications to the cloud server.
The cloud server acts as a surrogate hardware resource for
executing the migrated portions of the applications. FIG. 7
illustrates an example of a process 700 for migrating com-
puter applications from a computing device to a server. The
process 700 starts at step 705, where a computing device
identifies a service component of a computer application
executing at the computing device. The computer applica-
tion can include the service component (e.g., a background
component) and a user interaction component (e.g., a fore-
ground component). The service component does not
directly interact with a user of the computing device, while
the user interface component interacts with the user via user
interfaces generated by the user interface component. In
some embodiments, the service component and the user
interface component of the computer application can
execute at the computing device as two threads belonging to
a process of the computer application. For instance, the
service component can be configured to execute at the
computing device as a background thread managed by an
operating system of the computing device. The service
component can be designed to handle computing tasks, e.g.,
a CPU intensive task, a GPU intensive task, a memory
intensive task, a power intensive task, or a data input/output
intensive task.

At step 710, the computing device determines whether a
workload of the computing device can be reduced if the
service component is migrated to a server. If so, the process
700 continues to step 715. Otherwise, the process goes back
to step 705 to identify a service component of another
computer application executing at the computing device.

At step 710, the computing device stops executing the
service component at the computing device. Then at step
720, the computing device transfers to the server an instance
of the service component. Alternatively, the computing
device can just notify the server to start or restart an instance
of the service component at the server, if the server has the
instance of the service component. In some embodiments,

US 9,462,022 B2

9

the server have a mirror of the data (including the service
component) of the computing device, there can be minimal
work to migrate the service component over to the server if
the server has an instance of the service component and its
state data that are synchronized with the counterparts of the
computing device.

Optionally at step 730, the computing device can further
transmit data on which the service component has been
operating to the server. Once the server receives the service
component and corresponding data, the server starts execut-
ing the service component at the server.

The computing device may choose not to receive data
generated by the service component executed at the server,
when the corresponding user interface component at the
computing device is switched to a background of an oper-
ating system of the computing device. At step 735, the
computing device determines whether the user interface
component is running at a foreground of the operating
system of the computing device. If so, the process 700
continues to step 745. Otherwise, at step 740, the computing
device continues monitoring the user interface component.

Optionally at step 745, the computing device sends to the
server a message indicating that the computing device
switches the user interface component of the computer
application to the foreground of an operating system of the
computing device. Upon receiving the message, the server
can send out a result message as a response. At step 750, the
computing device receives from the server the result mes-
sage generated by the instance of the service component
executing at the server.

At step 755, the computing device feeds the result mes-
sage to a user interface component of the computer appli-
cation via a procedure call such that the user interface
component retrieves the result message as if it was generated
by an instance of the service component executed at the
computing device. The procedure call can be, e.g., a remote
procedure call (RPC) generated by an operating system of
the computing device for a thread of the user interface
component. Optionally at step 760, the computing device
can present content of the result message to the user of
computing device, by the user interface component via an
output device of the computing device.

The server can continue to execute the service component
at the server. The server or the computing device may
determine certain optimization factors in order to decide
whether to stop executing the service component at the
server. For instance, at step 765, the computing device can
determine whether an optimization factor for the service
component of the computer application executing at the
server is less than a predetermined value. The optimization
factor may depend on, e.g., a CPU resource, a GPU resource,
a memory resource, a power level, a data input/output
amount, or a completion time needed for the instance of the
background component to continue executing at the server.

If the optimization factor is larger than the predetermined
value, at step 770, the computing device allows the server to
continue executing the service component at the server (by,
e.g., avoiding sending further instruction to the server). If
the optimization factor is less than the predetermined value,
at step 775, the computing device may retrieve, from the
server, data generated by the instance of the service com-
ponent executed at the server before the instance of the
server component is stopped. At step 780, the computing
device sends to the server an instruction to stop executing
the instance of the service component at the server. At step

20

30

35

40

45

55

10

785, the computing device may choose to execute the
service component of the computer application at the com-
puting device.

Alternatively, the server can determine whether to stop
executing the service component at the server. The server
may monitor the status of the computing device and deter-
mine the optimization factor for the service component.
Based on the optimization factor, the server may decide
whether it is advantageous to continue executing the
migrated background component.

Those skilled in the art will appreciate that the logic
illustrated in FIG. 7 and described above, and in each of the
flow diagrams discussed below if any, may be altered in a
variety of ways. For example, the order of the logic may be
rearranged, substeps may be performed in parallel, illus-
trated logic may be omitted, other logic may be included,
etc. For instance, the process 700 may transfer the instance
of the service component to the server before stopping
executing the service component at the computing device.

The server, instead of the computing device, can also
monitor the computer applications running at the computing
devices and control the application migration process. FIG.
8 illustrates an example of an alternative process 800 for
migrating applications from computing devices to a server.
The process 800 starts at step 810, where an application
monitoring module of a server monitors a computer appli-
cation executing at the computing device. The application
monitoring module may be a part of an operating system of
the computing device. At step 820, the monitoring module
identifies a service component of the computer application
handling a computing task which does not need to receive
input data from or send output data from any I/O device of
the computing device.

At step 830, the application monitor module determines
whether a workload of the computing device can be reduced
by migrating the instance of the service component to the
server. If so, at step 840, the server instructs the computing
device to transfer an instance of the service component to the
server and to stop executing the service component at the
computing device.

At step 850, the server retrieves an instance of the service
component from the computing device. The server may
further retrieve from the computing device the data needed
for running the service component.

At step 860, the server executes the instance of the service
component at the server. The service component executed at
the server generates new data. The server may decide
whether to send back the generated data based on the status
of the computer application at the computing device. For
instance, at step 870, the server may determine whether the
computer application is running at a foreground of an
operating system of the computing device. The determina-
tion may be based on a signal from the computing device
indicating that the computing device switches the computer
application to the foreground of an operating system of the
computing device. If the computing application is not run-
ning at the foreground of the operating system, at step 880,
the server may cache the generated data and not send the
data to the computing device at the moment. If the comput-
ing application is running at the foreground of the operating
system, at step 890, the server may synchronize data gen-
erated by the instance of the service component executing at
the server with data on which a user interaction component
of the computer application executing at the computing
device operates.

The process 800 can continue to step 830 to determine
whether a workload of the computing device can be reduced

US 9,462,022 B2

11

by migrating the instance of the service component to the
server. If the server determines that the workload is not
reduced by the application migration, at step 895, server can
stop executing the instance of the service component at the
server, and instruct the computing device to execute the
service component at the computing device.

FIG. 9 is a high-level block diagram showing an example
of the architecture of a computer 900, which may represent
any computing device or server described herein. The com-
puter 900 includes one or more processors 910 and memory
920 coupled to an interconnect 930. The interconnect 930
shown in FIG. 9 is an abstraction that represents any one or
more separate physical buses, point to point connections, or
both connected by appropriate bridges, adapters, or control-
lers. The interconnect 930, therefore, may include, for
example, a system bus, a Peripheral Component Intercon-
nect (PCI) bus or PCI-Express bus, a HyperTransport or
industry standard architecture (ISA) bus, a small computer
system interface (SCSI) bus, a universal serial bus (USB),
IIC (I12C) bus, or an Institute of Electrical and Electronics
Engineers (IEEE) standard 1394 bus, also called “Firewire”.

The processor(s) 910 is/are the central processing unit
(CPU) of the computer 900 and, thus, control the overall
operation of the computer 900. In certain embodiments, the
processor(s) 910 accomplish this by executing software or
firmware stored in memory 920. The processor(s) 910 may
be, or may include, one or more programmable general-
purpose or special-purpose microprocessors, digital signal
processors (DSPs), programmable controllers, application
specific integrated circuits (ASICs), programmable logic
devices (PLDs), trusted platform modules (TPMs), or the
like, or a combination of such devices.

The memory 920 is or includes the main memory of the
computer 900. The memory 920 represents any form of
random access memory (RAM), read-only memory (ROM),
flash memory, or the like, or a combination of such devices.
In use, the memory 920 may contain a code 970 containing
instructions according to the technology disclosed herein.

Also connected to the processor(s) 910 through the inter-
connect 930 are a network adapter 940 and a storage adapter
950. The network adapter 940 provides the computer 900
with the ability to communicate with remote devices, over a
network and can be, for example, an Ethernet adapter or
Fibre Channel adapter. The network adapter 940 may also
provide the computer 900 with the ability to communicate
with other computers. The storage adapter 950 allows the
computer 900 to access a persistent storage, and may be, for
example, a Fibre Channel adapter or SCSI adapter.

The code 970 stored in memory 920 may be implemented
as software and/or firmware to program the processor(s) 910
to carry out actions described above. In certain embodi-
ments, such software or firmware may be initially provided
to the computer 900 by downloading it from a remote system
through the computer 900 (e.g., via network adapter 940).

The techniques introduced herein can be implemented by,
for example, programmable circuitry (e.g., one or more
microprocessors) programmed with software and/or firm-
ware, or entirely in special-purpose hardwired circuitry, or in
a combination of such forms. Special-purpose hardwired
circuitry may be in the form of, for example, one or more
application-specific integrated circuits (ASICs), program-
mable logic devices (PLDs), field-programmable gate arrays
(FPGAs), etc.

Software or firmware for use in implementing the tech-
niques introduced here may be stored on a machine-readable
storage medium and may be executed by one or more
general-purpose or special-purpose programmable micro-

10

15

20

25

30

35

40

45

50

65

12

processors. A “machine-readable storage medium”, as the
term is used herein, includes any mechanism that can store
information in a form accessible by a machine (a machine
may be, for example, a computer, network device, cellular
phone, personal digital assistant (PDA), manufacturing tool,
any device with one or more processors, etc.). For example,
a machine-accessible storage medium includes recordable/
non-recordable media (e.g., read-only memory (ROM); ran-
dom access memory (RAM); magnetic disk storage media;
optical storage media; flash memory devices; etc.), etc.

The term “logic”, as used herein, can include, for
example, programmable circuitry programmed with specific
software and/or firmware, special-purpose hardwired cir-
cuitry, or a combination thereof.

In addition to the above mentioned examples, various
other modifications and alterations of the invention may be
made without departing from the invention. Accordingly, the
above disclosure is not to be considered as limiting and the
appended claims are to be interpreted as encompassing the
true spirit and the entire scope of the invention.

What is claimed is:

1. A method for executing computer applications at a
server, comprising: identifying, at a computing device, a
service component of a computer application executed at the
computing device, wherein the service component runs at a
background of an operating system of the computing device;
transferring, from the computing device to a server, an
instance of the service component if the server does not have
the instance of the service component; receiving, from the
server, a result message generated by the instance of the
service component executed at the server; feeding, at the
computing device, a content of the result message to another
component of the computer application via a procedure call
such that the other component retrieves the content of the
result message as if it was generated by an instance of the
service component executed at the computing device;
wherein the service component and a user interface compo-
nent of the computer application execute at the computing
device as two threads belonging to a process of the computer
application; and determining an optimization factor for the
service component of the computer application executing at
the server; wherein when the optimization factor is less than
a predetermined value, sending, from the computing device
to the server, an instruction to stop executing the instance of
the service component at the server; executing the service
component of the computer application at the computing
device.

2. The method of claim 1, wherein the other component
is a user interface component of the computer application.

3. The method of claim 1, wherein the service component
does not directly interact with a user of the computing
device.

4. The method of claim 1, further comprising:

stopping executing the service component at the comput-

ing device.

5. The method of claim 1, further comprising:

transmitting, from the computing device to the server,

data on which the service component has been operat-
ing.

6. The method of claim 1, further comprising:

presenting content of the result message to the user of

computing device, by the user interface component via
an output device of the computing device.

7. The method of claim 1, wherein the procedure call is a
remote procedure call (RPC) generated by an operating
system of the computing device that is targeting to a thread
of the user interface component.

US 9,462,022 B2

13

8. The method of claim 1, wherein the service component
is configured to handle a CPU intensive task, a GPU
intensive task, a memory intensive task, a power intensive
task, or a data input/output intensive task.

9. The method of claim 1, wherein the service component
is configured to execute at the computing device as a
background thread managed by an operating system of the
computing device.

10. The method of claim 1, further comprising:

sending, from the computing device to the server, a

message indicating that the computing device is switch-
ing the user interface component of the computer
application to a foreground of an operating system of
the computing device.

11. The method of claim 10, further comprising: retriev-
ing, from the server, data generated by the instance of the
service component executing at the server before the
instance of the server component is stopped.

12. The method of claim 10, wherein the optimization
factor depends on a CPU resource, a GPU resource, a
memory resource, a power, a data input/output amount, or a
completion time needed for the instance of the background
component to continue executing at the server.

13. A computing device comprising: a processor; an
operating system including a migration module having
instructions which, when executed by the processor, monitor
a computer application executed at the computing device,
and identify a background thread and a foreground thread of
the computer application; a networking interface configured
to transfer to a server data necessary for executing an
instance of the background thread at the server, and to
receive from the server result data generated by the instance
of the background thread executed at the server; an output
device configured to present content of the result data via a
user interface generated by the foreground thread; wherein
the foreground thread generates the user interface based on
the result data as if the result data was generated by an
instance of the background thread executed at the computing
device; and determining an optimization factor for a service
component of the computer application executing at the
server; wherein when the optimization factor is less than a
predetermined value, sending, from the computing device to
the server, an instruction to stop executing the instance of the
service component at the server; executing the service
component of the computer application at the computing
device.

14. The computing device of claim 13, wherein the
migration module is further configured to notify the fore-
ground thread of the result data via an inter-thread commu-
nication as if an instance of the background thread executed
at the computing device initiates the inter-thread communi-
cation.

15. The computing device of claim 13, wherein the
background thread is configured to generate data for the
foreground thread, and the foreground thread is configured
to allow for user interface to interact with a user of the
computing device.

16. The computing device of claim 13, wherein the
networking interface is further configured to synchronize
between data on which the foreground thread operates at the
computing device and data on which the background thread
operates at the server.

10

15

20

25

30

35

40

45

50

55

60

14

17. The computing device of claim 13, wherein the
background thread is configured to handle a computing task
without sending data to or receiving data from the output
device of the computing device.

18. The computing device of claim 13, wherein the
migration module is further configured to determine whether
a workload of the computing device is reduced by executing
the instance of the background thread on the server.

19. A server for executing computer applications designed
for computing devices, comprising: a processor; a network-
ing interface configured to communicate with at least one
computing device; and an application monitoring module
configured to, when executed by the process, monitor a
computer application executing at the computing device,
and to identify a service component of the computer appli-
cation handling a computing task which does not need to,
but can if necessary, receive input data from or send output
data from any I/O device of the computing device; wherein
the networking interface is further configured to retrieve
from the computing device an instance of the service com-
ponent or data sufficient for the server to carry out the same
functionality of the service component; wherein the proces-
sor is further configured to execute the instance of the
service component at the server; wherein the networking
interface is further configured to synchronize data generated
by the instance of the service component executing at the
server with data on which a user interaction component of
the computer application executing at the computing device
operates; wherein the service component and a user inter-
action component of the computer application execute at the
computing device as two threads belonging to a process of
the computer application; and determining an optimization
factor for the service component of the computer application
executing at the server; wherein when the optimization
factor is less than a predetermined value, sending, from the
computing device to the server, an instruction to stop execut-
ing the instance of the service component at the server;
executing the service component of the computer applica-
tion at the computing device.

20. The server of claim 19, wherein the application
monitoring module is further configured to instruct the
computing device to transfer an instance of the service
component to the server and to stop executing the service
component at the computing device.

21. The server of claim 19, wherein the networking
interface synchronizes data of the computer application
between the server and computing device, in response to a
signal from the computing device indicating that the com-
puting device switches the computer application to a fore-
ground of an operating system of the computing device.

22. The server of claim 19, wherein the application
monitor module is further configured to determine whether
a workload of the computing device is reduced by migrating
the instance of the service component to the server.

23. The server of claim 22, wherein when the workload of
the computing device is not reduced, the application monitor
module is further configured to stop executing the instance
of the service component at the server, and the networking
interface is further configured to instruct the computing
device to execute the service component at the computing
device.

